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4-image group 8-image group 16-image group 32-image group
LV+LA RV+RA All Cham. LV+LA RV+RA All Cham. LV+LA RV+RA All Cham. LV+LA RV+RA All Cham.

MR 92.8 ±2.8 91.4 ±3.0 91.4 ±2.8 89.8 ±3.9 90.4 ±3.2 89.9 ±3.2 87.8 ±3.8 88.0 ±3.9 87.7 ±4.0 86.2 ±4.8 85.1 ±4.7 85.5 ±5.0
CT 88.7 ±3.9 86.5 ±3.3 87.7 ±3.6 87.0 ±3.9 87.9 ±3.8 87.1 ±4.0 87.1 ±4.3 85.2 ±4.9 86.9 ±4.0 84.2 ±5.7 82.9 ±5.2 84.0 ±5.3

MR+CT 91.0 ±3.7 89.1 ±3.5 89.3 ±3.1 87.9 ±4.0 88.1 ±3.7 87.2 ±3.5 87.5 ±3.9 87.1 ±4.9 87.0 ±4.1 85.7 ±5.1 84.1 ±5.0 84.5 ±5.0

TABLE V
AVERAGE DM (%) AND STANDARD DEVIATION ON THE MR-CT MIXED RAW AXIAL SCANS (SEE EXAMPLES IN FIG. 15).

4-image group 8-image group 16-image group 32-image group
LV RV All Cham. LV RV All Cham. LV RV All Cham. LV RV All Cham.

MR 91.8 ±3.2 90.2 ±3.1 90.4 ±3.3 88.2 ±4.2 87.8 ±4.5 86.8 ±4.2 86.8 ±3.8 85.9 ±4.8 86.4 ±4.5 85.2 ±4.9 85.8 ±4.5 86.0 ±4.7
CT 89.7 ±2.9 87.7 ±3.6 88.2 ±3.5 86.2 ±4.6 84.9 ±4.7 85.8 ±5.1 86.7 ±4.9 85.0 ±5.0 85.9 ±4.5 86.2 ±4.7 83.1 ±5.1 83.8 ±5.1

MR+CT 90.8 ±3.3 89.8 ±3.5 89.2 ±3.2 87.9 ±4.0 89.1 ±3.7 87.2 ±3.9 87.4 ±4.3 85.1 ±4.9 86.2 ±4.1 85.9 ±5.1 84.6 ±5.0 84.2 ±5.2

TABLE VI
AVERAGE DM (%) AND STANDARD DEVIATION ON THE MR-CT MIXED RAW SAGITTAL SCANS (SEE EXAMPLES IN FIG. 16).

LV RV All Chambers
MR (15 subjects) 91.5±2.8 89.0±3.2 90.2±3.1
CT (15 subjects) 90.1±2.7 88.3±4.0 89.1±3.8

TABLE III
AVERAGE DM (%) ON SHORT-AXIS SINGLE MODALITY DATA.

LV+LA RV+RA All Chambers
MR (15 subjects) 90.2±3.2 88.0±3.7 89.2±3.3
CT (15 subjects) 89.1±3.7 87.3±4.1 88.2±3.8

TABLE IV
AVERAGE DM (%) ON LONG-AXIS SINGLE MODALITY DATA.

abnormalities. Note that one randomly selected subject from
York MR Dataset (now Dataset 3) is removed for the equal
pair-up of the MR-CT joint segmentation. The final results are
calculated by taking the average DM over all images in the
same group.

A representative example for this test is presented in Fig. 15.
This example shows a 4 MR + 4 CT mixed image group with
different heart poses/sizes under the non-cardiac axial imaging
view. Our unsupervised groupwise segmentation has results
in successful extraction of the LV+LA and RV+RA regions
in the eight images, achieving average DM 88.2%. Similarly,
Fig. 16 presents a successful segmentation on 8 MR-CT mixed
raw sagittal scans. The full numerical results on axial scans
are reported in Table V and Table VI. The overall results for
axial and sagittal scans are insensitive to view and modality
changes. This proves the high versatility of our method in
different clinical conditions.

E. Non-regulated Raw Images: Non-diagnostic View

We finally test the segmentation on even less regulated, non-
diagnostic view images, to evaluate the performance under
extreme conditions. The test images are from Dataset 2 and
3 under a non-diagnostic view. A representative example of
this test is shown in Fig. 17. Our unsupervised segmentation
can achieve average DM 89.0% in this case, which provides
a highly flexible tool for arbitrary customized scenarios.

As Fig. 17 shows, four MR coronal view upper body scans
including the most significant frames of end-diatolic and end-
systolic stages are used in the test. Our scale 1 groupwise
segmentation successfully synchronizes the MR scans and

(a) Scale 1 groupwise segmentation for coronal images of a cardiac cycle.

(b) Scale 2 groupwise segmentation for identified sub-images from (a).

Fig. 17. Groupwise segmentation for non-diagnostic, freely chosen coronal
MR scans. (a): The scale 1 SSPs successfully segmented and identified the
hearts. (b): The LV+AO (yellow), RV (red), and PA (blue) are jointly obtained
by scale 2 SSPs.

generates 10 synchronized superpixels. The heart locations are
jointly identified, generating 8 new synchronized superpixels
for the cropped images. Then in the scale 2 groupwise segmen-
tation, the LV, RV, and PA regions are jointly identified from
the synchronized superpixels. Segmentation on other views are
immediately available by following the same process.

F. Implementation Details and Computation Time

The segmentation is implemented in Matlab, and performed
on Intel Core i7 CPU PC for small image group and also the
SHARCNET platform (http://www.sharcnet.ca) for large im-
age group. The optimization computation (Eqn. 7 and Eqn. 8)
are implemented by the optimization toolbox in Matlab. Our
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Fig. 18. The comparison between the computation time of SSN synchroniza-
tion (Sec. V-A) and incremental SSN synchronization (Sec. V-B).

unoptimized implementation of SSN synchronization is very
efficient, as most of the cases will converge in less than 100
iterations with default settings.

Implementation Comparison. We also test the implemen-
tation of SSN synchronization (Eqn. 7) and the incremental
synchronization (Eqn. 8) in Fig. 18. For a randomly selected
group of 60 images sampled from Dataset 1, the incremental
synchronization is initially synchronized with a 4-image set
in either two-chamber short axis or four-chamber long axis
images. The DM accuracies on both implementation are very
close (± 3%). For the same 60-image group, the SSN non-
incremental synchronization will take longer than 40 min
to converge, while incremental synchronization only need
less than 5.2s per image using our matlab implementation.
Incremental method has linear time growth and thus more
suitable for large image set synchronization and segmentation.

VIII. DISCUSSION

Our spectral synchronization method has many new prop-
erties that improve the performances and functionalities of
traditional spectral-based segmentation methods and existing
cardiac segmentation methods.

A. SSN v.s. Traditional Spectral Segmentations

Enhanced Feature Clustering. Traditional spectral-based
methods (or referred as random-walk methods in some litera-
tures) [26] [38] utilize the principal decomposition of spectral
graph matrix to provide robust image feature clustering and
image segmentation. Compared to these traditional methods,
our SSN-based method not only preserves the robust spectral
clustering of within-image features like contours/textures, but
automatically builds up the correspondences of these features
across images. These new correspondences are established by
borrowing the spectral clustering of the whole image group.
The SSN-correlated spectral clustering, in turn, enhances the
feature clustering of each image and finally improves the
segmentation quality.

Co-segmentation without Explicit Matching. In addition,
compared to other spectral groupwise segmentation methods
(or referred as co-segmentation) [43], SSN-based image cor-
respondences are modality independent and do not require
exact matching such as alignments of SIFT/intensity features
between images. This enables our SSN model to perform
groupwise segmentation across different modalities that have
diverse image intensities. The cross image correspondence
also constitutes explicit correlations at multiple superpixel
scales, which can be considered as a groupwise registration

at multiple scales. Specific superpixels can thus be jointly
identified and extracted, which provides automatic groupwise
analysis for these target regions.

B. SSN Groupwise Segmentation v.s. Existing Cardiac Seg-
mentations

Success/Failure of Groupwise Segmentation. For all the
tests we conducted, no fail cases are found in the groupwise
segmentations. However, one can imagine that when the
groupwise assumption is not met the proposed approach would
fail. One extreme case would be the mixture of the test image
group with images from incompatible different views, i.e.
a short axis view image group mixed with long axis view
images. Nevertheless, in practice, it has no application to put
different view images in correspondence thus this failure can
be avoided.

M3 Segmentation. Compared to the existing cardiac seg-
mentation methods [33] [6] [14] [19] [20] [34] [35] [36] [37]
[10], our approach is the first to provide groupwise segmen-
tation with region correspondences in multi-modality, multi-
subject, multi-chamber situation for different regular/non-
regular views. The overall comparison is presented in Ta-
ble VII. It is clear from the table that, after testing the largest
datasets (221 subjects) so far, not only our performance in
LV/RV segmentation is very competitive to existing major
segmentation methods, but we also provide a more general
and versatile solution for almost all clinical conditions. For the
traditional “single modality + single chamber” segmentation
tasks, our groupwise segmentation is still among the top per-
formance methods. In Table VIII, we present the quantitative
comparative results of our method and the top-ranked meth-
ods on MICCAI LV Segmentation Challenge Dataset 2. The
groupwise setting in this case is similar to those in Sec.VII-B
and Sec.VII-C, where a 5-image set out of 20 cardiac cycle
images is first randomly chosen for groupwise segmentation
then incrementally propagates to the whole cycle. Our method
has the best all phases performance (Endo+Epi) in training set,
and is tight to the best method in validation set. Illustrative
examples of this dataset are presented in Fig. 19, which shows
a groupwise segmentation with 93.2% DM accuracy.

Freeview Segmentation. As can be observed from Ta-
ble VII, unlike our segmentation method, all methods ex-
cept [8] are restricted to the segmentation of well-cropped
short-axis/long-axis (two/four-chamber) views. However, the
method proposed in [8] still requires the manual building of
image atlas and has not shown its ability to handle LV/RV
chamber segmentation. Our cross-modality whole heart seg-
mentation can be done without atlas/trainings. It makes the
complete cardiac segmentation process fully automatic, and is
more suitable for the segmentation tasks of today’s large scale
M3 image sets.

Region-to-Region Correspondences. We propose the novel
unsupervised region-to-region correspondences between MR
and CT images in cardiac segmentation in this paper. Although
some multi-atlas-based methods (i.e., [8] [10]) claimed they
can work on both modalities, the image correspondences

2http://smial.sri.utoronto.ca/LV Challenge/
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Method Modality View Chamber Dataset Performance (metric / result)
Andreopoulos et al MR Short axis LV 33 subjects Endo volumetric error / 1.43 ± 0.49 mm

[33] (2008) Epi volumetric error / 1.51 ± 0.48 mm
Zheng et al [6] (2008) CT Horizontal long axis LV, LA, 137 subjects LA point-to-mesh / 1.13 ± 0.55 mm

RV, RA RA point-to-mesh / 1.57 ± 0.48 mm
LV-Endo point-to-mesh / 0.98 ± 1.32 mm
LV-Epi point-to-mesh / 0.82 ± 1.07 mm

RV point-to-mesh / 0.84 ± 0.94 mm
Ecabert et al [14] CT Horizontal long axis LV, LA, 108 subjects LA point-to-surface / 0.71 ± 0.88 mm

(2008) RV, RA RA point-to-surface / 0.89 ± 0.96 mm
LV-Endo point-to-surface / 0.98 ± 1.32 mm
LV-Epi point-to-surface / 0.82 ± 1.07 mm

RV point-to-surface / 0.84 ± 0.94 mm
Ben Ayed et al [19] MR Short axis LV 10 subjects Cavity DM / 88 ± 9 %

(2009) Myocardium DM / 81 ± 10 %
Isgum et al [8] (2009) CT Axial view Whole heart, 29 subjects Tanimoto Coefficient 0.8847 ± 0.0331

Aortic
Zhang et al [20] (2010) MR Short axis LV, RV 50 subjects LV-Endo point-to-surface 1.67 ± 0.3 mm

LV-Epi point-to-surface / 1.81 ± 0.4 mm
RV-Endo point-to-surface / 2.13 ± 0.39 mm

Ben Ayed et al [34] MR Short axis LV 20 subjects Cavity DM / 92 ± 3.1 %
(2012) Myocardium DM / 82 ± 6.1 %

Nambakhsh et al [35] MR Short axis LV 20 subjects Cavity DM / 92 ± 7 %
(2013) Myocardium DM / 80 ± 10 %

Queiros et al [36] MR Short axis LV 45 subjects Endo DM 93 ± 3 %
(2014) Epi DM 94 ± 2 %

Ringenberg et al [37] MR Short axis RV 16 subjects Endo DM 88 ± 11 %
(2014) Epi DM 90 ± 8 %

Bai et al [10] MR Short axis LV 83 subjects Method 1 DM 81.2 %
(2015) Method 2 DM 81.5%

Our Method MR, CT Freeview LV(+LA), 221 subjects DM > 85 % for almost all situations
(short/long-axis, RV(+RA) (157 MR, 64 CT) (See Table I to VI)

axial/sagittal views...) Whole heart

TABLE VII
COMPARISON WITH MAJOR CARDIAC SEGMENTATION METHODS DEVELOPED IN RECENT YEARS.

Huang et al Lu et al [39] O’Brien et al Jolly [40] Constantinides et al Casta et al Wijnhout et al Ours
[30] [41] [42] [32] [31]

Training 90±4 (Endo) \ 80 (Endo) 88.1±5.7 (Endo) 88.4±10.2 (Endo) \ \ 90.8±2.6 (All)
(15 cases) 93±2 (Epi) 91.3 (Epi) 93.5±1.4 (Epi) 92.9±6.5 (Epi)
Validation 89±4 (Endo) 89±3 (All) (same as above) 87.9±3.2 (Endo) 92.3±6.1 (Endo) 92.7 (All) 89±3 (All) 92.3±3.8 (All)
(15 cases) 94±1 (Epi) 93.3±1.8 (Epi) 92.2±5.0 (Epi)

TABLE VIII
QUANTITATIVE COMPARISON OF AVERAGE DM (%) AND STANDARD DEVIATION ON THE MICCAI LV CHALLENGE DATASET.

cannot be automatically obtained from the manually built atlas.
Instead, our method can automatically build up the correspon-
dences, and an accurate MR-CT registration can also be done
by simply aligning the identified chamber regions from our
synchronized superpixels. For single subject study, this en-
ables the cross-modality comparative measurement/diagnosis
for different cardiac problems. For multiple subject study,
particularly in the big data environment, this enables a more
comprehensive and non-biased statistical analysis for cardiac
data obtained from different modalities and protocols.

IX. CONCLUSIONS

We proposed an unsupervised groupwise segmentation for
general cardiac images. Our method can provide simultaneous
segmentation for a group of cardiac images with multiple
modalities, multi-chamber, and multiple subjects images. The
segmentation is based on the Synchronized Spectral Net-
work (SSN) model, which correlates the modality independent
spectral features across images and clusters the features into
synchronized superpixels. The heart regions from different

images can be identified simultaneously using synchronized
superpixels and chambers can then be extracted as the segmen-
tation results. Our segmentation has accurate and robust results
(DM > 85%) for uncropped scans, regulated short-axis/long-
axis (four-chamber) images, even non-regulated images. It
provides a general algorithmic framework for today’s cardiac
segmentation tasks.
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